Apolipoprotein A-I regulates lipid hydrolysis by hepatic lipase.
نویسندگان
چکیده
Association of hepatic lipase (HL) with pure heparan sulfate proteoglycans (HSPG) has little effect on hydrolysis of high density lipoprotein (HDL) particles, but significantly inhibits (>80%) the hydrolysis of low (LDL) and very low density lipoproteins (VLDL). Lipolytic inhibition is associated with a differential ability of the lipoproteins to remove HL from the HSPG. LDL and VLDL are unable to displace HL, whereas HDL readily displaces HL from the HSPG. These data show that HSPG-bound HL is inactive. Purified apolipoprotein (apo) A-I is more efficient than HDL at liberating HL from HSPG, and HL displacement is associated with the direct binding of apoA-I to HSPG. However, displacement of HL by apoA-I does not enhance hydrolysis of VLDL particles. This appears due to the direct inhibition of HL by apoA-I. Both apoA-I and HDL are able to inhibit VLDL lipid hydrolysis by up to 60%. Inhibition of VLDL hydrolysis is associated with the binding of apoA-I to the surface of the VLDL particle and a concomitant decreased affinity for HL. These data show that apoA-I can regulate lipid hydrolysis by HL by liberating/activating the enzyme from cell surface proteoglycans and by directly modulating lipoprotein binding and hydrolysis.
منابع مشابه
HDL regulates the displacement of hepatic lipase from cell surface proteoglycans and the hydrolysis of VLDL triacylglycerol.
We have previously shown that hepatic lipase (HL) is inactive when bound to purified heparan sulfate proteoglycans and can be liberated by HDL and apolipoprotein A-I (apoA-I), but not by LDL or VLDL. In this study, we show that HDL is also able to displace HL directly from the surface of the hepatoma cell line, HepG2, and Chinese hamster ovary cells stably overexpressing human HL. ApoA-I is mor...
متن کاملLow levels of high density lipoproteins in Turks, a population with elevated hepatic lipase. High density lipoprotein characterization and gender-specific effects of apolipoprotein e genotype.
Turks have strikingly low levels of high density lipoprotein cholesterol (HDL-C) (10-15 mg/dL lower than those of Americans or Western Europeans) associated with elevated hepatic lipase mass and activity. Here we report that Turks have low levels of high density lipoprotein subclass 2 (HDL(2)), apoA-I-containing lipoproteins (LpA-I), and pre-beta-1 HDL and increased levels of HDL(3) and LpA-I/A...
متن کاملOverexpression of apoC-I in apoE-null mice: severe hypertriglyceridemia due to inhibition of hepatic lipase.
Apolipoprotein C-I (apoC-I) has been proposed to act primarily via interference with apoE-mediated lipoprotein uptake. To define actions of apoC-I that are independent of apoE, we crossed a moderately overexpressing human apoC-I transgenic, which possesses a minimal phenotype in the WT background, with the apoE-null mouse. Surprisingly, apoE-null/C-I mice showed much more severe hyperlipidemia ...
متن کاملInhibitory effects of C apolipoproteins from rats and humans on the uptake of triglyceride-rich lipoproteins and their remnants by the perfused rat liver.
Like rat C apolipoproteins, each of the C apolipoproteins from human blood plasma (C-I, C-II, C-III-1, and C-III-2) bound to small chylomicrons from mesenteric lymph of estradiol-treated rats and inhibited their uptake by the isolated perfused rat liver. This inhibitory effect of the C apolipoproteins was independent of apolipoprotein E, which is present only in trace amounts in these chylomicr...
متن کاملHepatic lipase promotes a loss of apolipoprotein A-I from triglyceride-enriched human high density lipoproteins during incubation in vitro.
Studies have been performed to investigate a possible mechanism to account for the low concentrations of apolipoproteins A-I (apo A-I) in subjects with hypertriglyceridemia. Incubation of human plasma in vitro with canine hepatic lipase resulted in the hydrolysis of approximately half the triglyceride in the high density lipoproteins (HDLs), but little change in the concentrations of other HDL ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 275 43 شماره
صفحات -
تاریخ انتشار 2000